
by Kenneth E. Marks

PHP Web Development with MySQL
A Hands On Approach to Application Programming

Sam
ple

PHP Web Development
with MySQL

A Hands On Approach to
Application Programming

by Kenneth E. Marks

a php[architect] guide

Sam
ple

﻿

PHP Web Development with MySQL—A Hands On Approach to Application Programming III

Introduction� XVII

1. The Life and Times of a PHP Script� 1
Static Vs. Dynamic Websites	 � 2
The Browser and the Server	 � 2
The Server and PHP	 � 3

2. Writing Your First PHP Script� 5
Setting Up a Development Environment	 � 6
Hello World!	 � 15
Exercises	 � 21

3. Why Variables Matter� 23
Variables in PHP	 � 24
Types of Variables	 � 25
Constants	 � 31
Exercises	 � 31

4. Basic String Interpretation� 33
Concatenation	 � 34
Interpolation	 � 34
Escaping	 � 35
Heredoc	 � 36
Exercises	 � 36

5. Operators, Expressions, and Basic Arithmetic� 37
Operators and Expressions	 � 38
Math Functions	 � 41

Table of Contents

Sam
ple

PHP Web Development with MySQL—A Hands On Approach to Application ProgrammingIV

﻿

6. Arrays� 43
Simple Arrays in PHP	 � 44
Associative Arrays	 � 45
Adding Values	 � 46
Explicit Versus Short Array Syntax	 � 46
Useful Array Functions	 � 46
Multidimensional Arrays	 � 52
Exercises	 � 54

7. Truth, Comparisons, Conditions, and Compound Conditions� 55
Comparison Operators	 � 56
Conditional Logic	 � 59
Compound Conditional Logic Using Logical Operators	 � 62
Exercises	 � 64

8. Verifying Variables and Type Checking� 65
Verifying Variables	 � 66
Verifying and Checking Variable Types	 � 68
Exercises	 � 71

9. Looping� 73
Counting Loops	 � 74
Sentinel Loops	 � 76
Exiting and Continuing a Loop	 � 78
Exercises	 � 79

10. Functions� 81
Simple Function	 � 82
Function Parameters/Arguments	 � 83
Returning Values from a Function	 � 84
Further Advice On Writing Good Functions	 � 85
Exercises	 � 88Sam

ple

﻿

PHP Web Development with MySQL—A Hands On Approach to Application Programming V

11. Working with HTML Forms� 89
A Simple Form	 � 90
Processing Our Form and Outputting Back to the Web Page	 � 91
Cleaning It Up Using a Self Referencing Page	 � 93
Exercise: Badlibs, Part 1	 � 95

12. Inserting Data Into a MySQL Database� 97
Using the MySQL CLI	 � 98
Create a PHP Application to Insert Data	 � 108
 Exercises	 � 116

13. Returning Data from a MySQL Database� 117
Returning Database Rows in a PHP Application	 � 118
Exercise: Badlibs, Part 2	 � 121

14. Validating Form Data and Creating Sticky Fields� 123
Modifying FullName Behavior Based On Validation	 � 124
Adding Field Validation	 � 125
Making the First and Last Name Fields Sticky	 � 127
Testing Our Script with Sticky Fields	 � 130
Exercise: Contact Form	 � 131

15. Displaying a List of Item Details� 133
Designing the Database	 � 134
Creating the Database	 � 135
Adding Movie Data	 � 139
Creating the Main Movie Listing Page	 � 141
Creating the Movie Details Page	 � 149
Exercises	 � 155

16. Adding Data Using the Web Application� 157
Creating a Page to Add Movies	 � 158
Complete Code Listing	 � 169
Link to the “Add a Movie” Page from the Listing Page	 � 174
Exercises	 � 174Sam

ple

PHP Web Development with MySQL—A Hands On Approach to Application ProgrammingVI

﻿

17. Removing Data Using the Web Application� 175
Adding Deletion Links to Movie Listings	 � 176
Creating a “Remove a Movie Page”	 � 178
Complete Code Listing	 � 186
Exercises	 � 189

18. Editing Data Using the Web Application� 191
Linking Movie Details to the Edit Page	 � 192
Create the Editing Page	 � 193
Complete Code Listing	 � 209
Exercises	 � 213

19. Working With Files and Feature Additions to Existing Code� 215
Add a Field for File Information	 � 217
Create a Folder for Uploaded Movie Image Files	 � 219
Adding File Upload Capability	 � 219
Displaying Thumbnail Images of Movies on Main Page	 � 248
Displaying Movie Image on Details Page	 � 252
Add Image File Uploads to the Editing Page	 � 256
Displaying Image on Deletion Page	 � 269
Exercises	 � 276

20. Basic HTTP Authentication� 277
Password Protection with HTTP Authentication	 � 278
How Does HTTP Authentication Work?	 � 279
Create authorizeaccess.php	 � 280
Adding Authorization to Pages	 � 283
Exercises	 � 284

21. Persistence� 285
Cookies	 � 286
Session Variables	 � 294
Cookies and Session Variables	 � 299
The Database	 � 300
Best Practices in Solving the Persistence Problem	 � 300
Exercises	 � 300Sam

ple

﻿

PHP Web Development with MySQL—A Hands On Approach to Application Programming VII

22. Creating Secure Web Applications� 301
Secure Password Protection for Authenticating	 � 302
Guarding Against SQL Injection	 � 306
Leaking Information to Hackers	 � 314
Preventing Cross-Site Scripting Attacks	 � 315
File Uploads	 � 319
Securing Your Session	 � 321
Final Thoughts	 � 322
Exercises	 � 322

23. Adding User Logins� 323
Create a user Table	 � 325
Create a Signup.php script	 � 326
Create a login.php Script	 � 341
Create a logout.php Script	 � 351
Allow Users with Administrative Access	 � 352
Exercises	 � 356

24. Adding a Navigation Menu� 357
Create Navbar Logic	 � 358
Add the Navigation Bar	 � 362
Add Navigation Bar to Details Page	 � 363
Add Login Link to Navigation Bar	 � 365
Add Logout Link to Navigation Bar	 � 367
Add Sign Up Link to Navigation Bar	 � 368
Add Navigation Bar to addmovie.php	 � 369
Add Navigation Bar to Unauthorizedaccess.php	 � 372
Add Navigation Bar to editmovie.php	 � 372
Add Navigation Bar to removemovie.php	 � 375
Complete Code Listings	 � 376
Exercises	 � 378Sam

ple

PHP Web Development with MySQL—A Hands On Approach to Application ProgrammingVIII

﻿

25. Adding Reservation Features� 379
Add Number of Copies and Number Reserved	 � 380
Persisting Movie Reservations for Users	 � 397
Checking Movies Reserved by Users	 � 398
Modify Homepage Based On Access Privileges	 � 400
Refactoring to Remove Duplicate Inclusions	 � 405
Script for Reserving Movies	 � 407
Adding Cart to Navigation Menu	 � 418
Add a Script for a Shopping Cart	 � 420
Navigating to Reserved Movies	 � 432
Showing and Returning Reserved Movies	 � 435
Features to Add	 � 448
Flaws in This Application	 � 449
Exercises	 � 450

26. Introduction to Object-Oriented Programming in PHP� 451
Classes	 � 452
Properties	 � 453
Encapsulation Using Access Modifiers	 � 454
Accessor Methods	 � 454
The $this Variable	 � 456
General Purpose Methods	 � 458
Instantiating and Using a Class	 � 458
Validating Input to a Setter Method	 � 461
Inheritance	 � 465
Overriding Methods	 � 468
Constructors	 � 469
Creating Parameterized Queries Using OOP	 � 473
Exercises	 � 485

Index� 487Sam
ple

PHP Web Development with MySQL—A Hands On Approach to Application Programming 23

Chapter

3
Why Variables Matter

“Always code as if the guy who ends up maintaining your code will be a
violent psychopath who knows where you live.”

– Martin Golding

Sam
ple

PHP Web Development with MySQL—A Hands On Approach to Application Programming24

3. Why Variables Matter

Variables in PHP

[1]	 PSR-1: Basic Coding Standard: http://www.php-fig.org/psr/psr-1/
[2]	 PSR-2: Coding Style Guide: http://www.php-fig.org/psr/psr-2/
[3]	 naming constants: http://www.php-fig.org/psr/psr-1/#1-overview

PHP supports several kinds of variables. Predefined variables are defined already by the
PHP language, while user-defined variables are defined by you, the developer, in your code.
Then there are form variables defined by the name attributes in an HTML form and become
keys in a predefined variable.

Valid Variable Names
•	 PHP variable names must begin with a dollar sign ($).
•	 A variable name must be at least one character in length.
•	 The first character after the dollar sign $ can be a letter or an underscore _, and charac-

ters after that can be a letter, an underscore, or a number.
•	 Spaces and special characters other than _ and $ are not allowed in any part of a vari-

able name.

Here are a few examples of valid variable names:

$name1
$price_tag
$_abc
$Abc_22
$A23

Here are a few examples of invalid variable names:

$10names
box.front
$name#last
A-23
$5

Recommendations for Naming Your Variables
PHP does have a set of coding standards, which this book follows. You can find them on
the PHP-FIG website at PSR-1: Basic Coding Standard[1] and PSR-2: Coding Style Guide[2].
However, the coding standards intentionally give little guidance on how to name your vari-
ables. The standards recommend using camelCase for naming your methods, StudlyCaps for
class names, and ALL_CAPS separated by underscores for naming constants[3].Sam

ple

http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-1/#1-overview

Types of Variables

PHP Web Development with MySQL—A Hands On Approach to Application Programming 25

I like to use the following conventions when creating variables, functions, methods,
constants, and classes in PHP, which I will be using throughout this book:

Property Example
Variable Names $snake_case

Function/Method Names function camelCase()

Classes class StudlyCaps

Constants const ALL_CAPS

Regarding naming your variables, a recommended practice is to choose good descriptive
names for your variables (e.g., $temperature_fahrenheit). Also, most predefined PHP vari-
ables start with a $_ (i.e. $_POST[]). I recommend that you do not create any variables starting
with an underscore (_) as this might be confusing to other PHP developers that have to
maintain your code.

Types of Variables
All data is eventually represented to a computer using 1s and 0s. However, a programming
language interpreter or compiler must know the data type representation before correctly
converting the data into a format the computer can use. Like several other programming
languages (e.g., JavaScript), PHP is a dynamically typed language (as opposed to a statically
typed language like Java). A variable will dynamically change its type implicitly based on the
data type of the value assigned to it or the context in which it’s used.

Scalar Data Types
PHP supports the following scalar data types:

•	 Boolean
•	 integer
•	 float
•	 stringSam

ple

PHP Web Development with MySQL—A Hands On Approach to Application Programming26

3. Why Variables Matter

Booleans
A Boolean data type contains a logical value that is either TRUE or FALSE. Boolean values are
typically used in conditional logic statements:

$passed_drivers_license_exam = TRUE;

if ($passed_drivers_license_exam == TRUE)
{
 echo "Award driver's license.
";
}

The online PHP documentation has more information about Boolean data types[4].

Integers

An integer data type contains a whole number that can be negative, zero, or positive. They
are typically represented in the base-10 number system but can be represented using base 2,
8, 10, or 16.

For more information, see the PHP docs about integer data types[5].

Floats

A floating-point data type contains real numbers which can be expressed either using deci-
mals and/or scientific notation:

// Pascal to Pound per square inch
$pa_to_psi = 0.000145037738;

// Pascal to Pound per square inch
$pa_to_psi = 145037738e-12;

// Pascal to Pound per square inch
$pa_to_psi = 1.45037738e-4;

See the PHP documentation for more information about floating point data types[6].

[4]	 Boolean data types: http://php.net/language.types.boolean
[5]	 integer data types: http://php.net/language.types.integer
[6]	 floating point data types: http://php.net/language.types.floatSam

ple

http://php.net/language.types.boolean
http://php.net/language.types.integer
http://php.net/language.types.float

Types of Variables

PHP Web Development with MySQL—A Hands On Approach to Application Programming 27

Strings
A string is a group of characters enclosed in either single (') or double (") quotes. The type
of opening quote must match the closing quote:

echo "This is a string";
echo 'This is also a string';
echo "This is a string with 'singe-quotes' embedded";
echo 'This is a string with "double-quotes" embedded';

If you have a string surrounded by double-quotes (") you can contain a double-quote in
your string by escaping it with the back-slash (\). Likewise, you can embed single-quotes by
escaping them if they are inside of a string surrounded by single-quotes:

echo "This is a string surrounded by \"";
echo 'I don\'t like using contractions';

See the PHP manual for more information about string data types[7].

[7]	 string data types: http://php.net/language.types.string

Compound Data Types

PHP defines several “compound” data types which allow you to contain or aggregate
multiple pieces of data of the same data type under a single entity. PHP supports the
following compound data types:

•	 array
•	 object
•	 callable
•	 iterable

Array

Arrays in PHP are ordered maps, which are a way to associate a key with its corresponding
value. Therefore, arrays in PHP are known as “associative arrays.”

An array is created using the array() language construct. Here’s how to create an empty
array:

$fahrenheit_temperatures = array();Sam
ple

http://php.net/language.types.string

PHP Web Development with MySQL—A Hands On Approach to Application Programming28

3. Why Variables Matter

PHP also supports short array syntax, which lets you define an array like this:
$temperatures = [];

To add (or push) values onto the end of an array, use the [] syntax immediately following
the variable name. Without specifying a key when adding values to an array, the key will be
the next integer value:

$fahrenheit_temperatures[] = 32; // 32 is associated with key 0
$fahrenheit_temperatures[] = 100; // 100 is associated with key 1

Keys can be specified using either strings or integers. Associative arrays often use strings as
keys to give meaning to the values they associate with in the array. To initialize an array with
named keys, use the rocket (=>) operator:

$us_state_captials = array(
 "Wisconsin" => "Madison",
 "California" => "Sacramento"
);

To add a named key to the end of the array, specify it in between []s:

$us_state_captials["Florida"] = "Tallahassee";

Note that arrays in keys are unique, so if you specify a key that already exists, you will be
replacing its value.

A useful function for viewing the contents of an array is print_r()[8]. Embed print() in a set
of <pre> tags as shown in Listing 3.1.

Listing 3.1.

 1. <pre>
 2. <?php
 3. $us_state_captials = array(
 4. "Wisconsin" => "Madison",
 5. "California" => "Sacramento"
 6.);
 7.
 8. print_r($us_state_captials);
 9. ?>
10. </pre>

[8]	 print_r(): http://php.net/print_rSam
ple

http://php.net/print_r

Types of Variables

PHP Web Development with MySQL—A Hands On Approach to Application Programming 29

This function call produces the following output:

Array
(
 [Wisconsin] => Madison
 [California] => Sacramento
)

You can find more information on array data types[9] online.

Object

PHP is an “Object-Oriented” programming language, and it allows you to create objects.
Objects are created from “class” definitions. Class definitions are like complex types that
allow you to group your program data (what your program knows) and your program func-
tions (what your program does) in one place to represent modular components in software
better. We will cover object-oriented programming in more detail later in the book.

To create an object, you “instantiate” it from a class definition using the new keyword as in
Listing 3.2.

Listing 3.2.

 1. <?php
 2.
 3. class Radio
 4. {
 5. function turnOnRadio()
 6. {
 7. echo "Turning radio on";
 8. }
 9. }
10.
11. $car_radio = new Radio();
12. $car_radio->turnOnRadio();

The PHP manual has more information on objects[10].

[9]	 array data types: http://php.net/language.types.array
[10]	 objects: http://php.net/language.types.objectSam

ple

http://php.net/language.types.array
http://php.net/language.types.object

PHP Web Development with MySQL—A Hands On Approach to Application Programming30

3. Why Variables Matter

Callable
“Callables” can be created in PHP by naming a function to call as a string and invoking it with
the call_user_func() function[11]. You can do this with simple functions, static class methods,
and instantiated class methods. The following is a simple example of using a callback.

function exampleCallbackFunction()
{
 echo "Hello world!";
}

call_user_func('exampleCallbackFunction');

For more information on callables[12], check the online manual.

Iterable

An iterable[13] is a pseudo-type. It enforces arguments to functions or return values from
functions are traversable like arrays. You may see this typehint when looking at the API for
PHP functions. It mainly means that you can loop through the variable using a foreach.

[11]	call_user_func() function: http://php.net/call_user_func
[12]	 callables: http://php.net/language.types.callable
[13]	iterable: http://php.net/language.types.iterable
[14]	 resources: http://php.net/language.types.resource

Special Data Types

PHP defines a couple of special data types as well. These are:
•	 resource
•	 NULL

Resource

A “resource” is a special variable containing a reference to an external resource. Resources
are typically used for working with files and databases:

$db_connection = mysqli_connect(
 'localhost', 'db_user', 'db_password', 'db_to_use'
);

$file_handle = fopen('file.txt' 'r');

For more information on resources[14] and their usages, see the online documentation.Sam
ple

http://php.net/call_user_func
http://php.net/language.types.callable
http://php.net/language.types.iterable
http://php.net/language.types.resource

Constants

PHP Web Development with MySQL—A Hands On Approach to Application Programming 31

NULL
A “NULL” value[15] is a special variable that does not contain a value. A variable is NULL if:

•	 it is assigned the constant NULL,
•	 it has not been assigned any value,
•	 or it has been unset().

[15]	 “NULL” value: http://php.net/language.types.null
[16]	define(): http://php.net/function.define

Constants
Constants are values that do not change. Named constants are created in PHP using the
define()[16] function:

define("BOILING_TEMP_IN_CELCIUS", 100);
echo BOILING_TEMP_IN_CELCIUS; // outputs 100

Exercises
Create a script variables.php and do the following:

1.	 Assign numbers to two variables and echo their values.
2.	 Create a variable to hold a name, echo the string "Hello NAME" where NAME is the value

of your variable.
3.	 Define a constant that represents the acceleration due to gravity (9.81 m/s). Echo the

value of this constant.

Sam
ple

http://php.net/language.types.null
http://php.net/function.define

PHP Web Development with MySQL—A Hands On Approach to Application Programming 487

A–C

Index
A
access
 credentials, 282
 modifiers, 452, 454, 473
 privileges, 324–25, 327, 353,
400–401, 403
adminer, 12–14, 98, 112, 136–37,
139, 155, 217, 325, 380, 397
algorithm, 304, 325
 password hashing, 304–5
algorithms, encryption, 306
apache, 9–10, 12, 219, 223, 302
 apt install, 9
 restart, 12
API, 30, 315, 474
 external, 88
 unsafe JavaScript, 315
application security risk (ASR),
302, 306, 315
array, 27–30, 43–52, 54, 69–70,
75, 77–78, 92, 119–20, 150–51,
161, 198, 203, 228, 348–49,
413–14, 425–27, 430–31, 481
 associative, 27–28, 45, 53–54,
77, 91, 94, 119, 477
 empty, 27, 44, 295
 functions, 46–47, 49, 51
 indexed, 44
 multidimensional, 52–53
 numeric, 44–45, 479
 short syntax, 28, 44–46
 superglobal, 161, 178, 180, 182,
184–85, 192, 202, 205, 271

attack, 306, 315–16, 319
 collision, 302
 directory path traversal, 319
 man-in-the-middle, 321
authentication, 277–80, 282–84,
352
 basic, 278–79
 headers, 281, 283, 352

B
Bash, 98–101, 106
Bootstrap, 141–42, 149, 160, 164,
178, 183
 card, 159, 178
 Client-Side Validation, 164, 203,
291, 328, 343

C
callables, 30, 69
Canonical, 6
CAPTCHAs, 326
characters
 special, 19, 24
 string escape, 35
class
 base, 465–68
 constants, 461, 481
 definitions, 29, 453
 design, 453–54
 instantiating, 458
 name, 24
 naming, 453
CLI (command-line interface),
13, 98, 106

code
 conditional, 127, 160
 legacy, 109
 procedural-based, 313
 vulnerable, 317
concatenate, 34, 36, 305, 474
condition, 55–64, 74, 184–86,
205–6, 208, 225–26, 230–31, 237,
330–31, 334–36, 344–47, 366,
371, 383–84, 387–89, 409–10,
423–24, 426–28, 437–38, 440–42
 catch-all, 410, 424, 438
 elseif, 225, 344
 ternary, 366, 372
conditional logic, 56, 59, 93, 288,
313, 330, 476
conditional statements, 59–62,
281
 compound, 62–64
constants, 25, 31, 85–86, 142, 223,
225, 229, 461, 475
 global, 85
 referencing, 461
constructors, 452, 455, 469–73,
475
 child, 472
 default, 459, 469
cookies, 184, 286–92, 295–300,
314, 459
 referencing, 296
 saved, 288, 290, 292
 values, 288
CrackStation, 303–4Sam
ple

PHP Web Development with MySQL—A Hands On Approach to Application Programming488

D–J

D
data
 persisting, 300
 untrusted, 315
 user-supplied, 314–15, 322
database, 13–14, 77–78, 98,
101–2, 105–6, 108–14, 129–31,
134–37, 143–44, 166–68, 174,
192–94, 216–17, 234–35, 259–62,
300, 305–7, 309–10, 390–92,
474–75
 code, 235, 261
 connection, 109–10, 333, 337
 error querying, 77, 111, 119–20,
127, 129
 errors, 333, 476
 northwind, 99–100, 102
 queries, 118, 146, 316, 332–33,
337, 473
 table, 199, 300, 314–15, 324–25,
380, 449–50, 474, 476, 478, 480
 user account, 13
data type, 25, 27, 57, 102, 333, 476
 Boolean, 26, 68
 complex, 458
 compound, 27
 floating-point, 26
 integers, 26, 68
 special, 30
 string, 27, 68–69, 332, 337
date, 3, 18–19, 286, 302, 325, 449
debugging, 6, 61, 85, 89
destructors, 472
directory
 current, 90
 downloads, 13

 traversal attacks, 318
Docblocks, 224, 332

E
email, 19, 318, 470–72, 475–78,
480, 482
email address, 318, 474–75
error
 codes, 222, 332
 connection, 114
 fatal, 467
 last, 333, 337
 message, 109, 114, 124, 224–27,
232, 235, 237–38, 261, 412
 output, 113
error conditions, 225, 237–38
error handlers, custom, 109
exception, 358, 452, 475–77, 479,
482, 484
 handling, 476

F
file
 executable, 222, 320
 field, 218, 248–49, 252, 259, 262,
270–71, 381
 php.ini, 4, 11
 uploading, 319–20
 uploads, 146, 222–23, 228, 258,
319
form
 login, 318, 341
 simple, 90
 submitted, 93
function, 30–31, 81–88, 108–10,
165, 203–4, 223–25, 229–32,
234–35, 247, 268, 293–95, 299,

305–6, 311–12, 329–30, 332–35,
340, 342–43, 350–51, 398–99
 anonymous, 205
 call, 29
 header, 332–33
 scoping operators, 86
 signature, 86, 333

G
getters, 454–56, 458–59, 462, 465,
470–71, 485
 accessor methods, 454

H
hash, 302–6, 310, 325, 336,
338–39, 346, 348–49
 salted, 305
 unique, 304–5

I
IDEs (integrated development
environment), 112, 333
immutability, 454
inheritance, 452, 465, 467–68
integers, 25–26, 28, 41, 44, 68–70,
333, 458
integrated development environ-
ment. See IDEs

J
Java, 25, 323, 456–57
JavaScript, 165, 173, 204, 212,
293, 298, 315–16, 321, 340, 343,
350
 code, 164, 205, 317
 function, 291, 330, 343Sam
ple

PHP Web Development with MySQL—A Hands On Approach to Application Programming 489

L–R

L
LastPass, 304
login
 individual, 324
 page, 336, 339, 341–42, 352,
355, 365–68
 script, 336, 341–45, 347, 349,
353, 365
loop, 73–79, 86, 119–20, 212, 216,
247, 249, 293, 299, 340, 343, 350
 foreach, 75, 78–79, 203
 sentinel, 74, 76–77

M
md5, 303–4
modulus, 39–42
 operator, 41
MySQL
 database, 76–77, 97–120, 309,
475
 documentation, 99
 northwind.sql, 101
 server, 98, 109, 111, 119–20,
151, 180–81, 194–95, 311–13,
335, 346, 394–95, 398–99,
429–30, 441–42, 444–46
 server and client, 10
MySQL CLI, 14, 98–107, 112,
118, 135

N
Northwind SQL file, 77, 99–102

O
Object-Oriented Programming.
See OOP
objects, 27, 29, 38–39, 69, 71,
453–56, 458–59, 467, 469–71,
476, 479
 database results, 333, 337
 immutable, 455
OOP (Object-Oriented Program-
ming), 29, 82, 451–86
Open Web Application Security
Project[1]. See OWASP
operator, 28, 34, 37–42, 45, 57
 arithmetic, 39–41
 assignment, 38
 comparison, 56–57
 logical, 61–63
 precedence, 39–40, 62
 rocket, 45
 scope resolution, 461
 scoping, 86–87
 ternary, 60, 202–3, 361
OWASP (Open Web Application
Security Project[1]), 302, 315,
319, 322
OWASP, Cheat Sheet Series, 302
OWASP, Top ten, 302, 306, 315

P
paamayim-nekudotayim, 461
parameters, 68, 82–84, 86–87,
110, 224, 332–34, 337, 398–99,
470, 475–76, 479–80, 484
 default, 318
 hidden form, 408
 incoming, 476, 483
 malicious, 186, 208
 named, 476

password
 fields, 331, 345
 hash, 303
 hashes, 304
 salted, 304–5
 securing user, 302
 valid, 328, 339, 342, 350
PDO (PHP Data Objects), 108,
452, 473–76, 478–79, 481–82, 484
PHP Data Objects. See PDO
phpinfo, 4, 20
php.ini
 configuration, 223
 directives, 4
POST
 form variables, 237
 request, 164, 184, 223
precedence, 39, 62
properties, 25, 46, 452–56,
458–59, 470, 473, 479–81, 485
 class instance, 472
 object’s, 469
 parent, 465

Q
query parameters, 145–47,
150–51, 176–78, 180, 182, 192,
196, 205, 207, 313–14, 318,
332–33, 337
 sending, 146
query string, 110, 115, 118–19,
143, 186, 206, 208, 332–33, 337

R
readability, 62, 82, 91
 high, 85Sam
ple

PHP Web Development with MySQL—A Hands On Approach to Application Programming490

S–X

S
security, 4, 12, 115, 158, 176,
192, 222, 278, 286, 291
 risks, 299, 302, 306
 web site, 322
security risks, top application,
302
session, 294–300, 321, 341–42,
344–45, 348–51, 353–54,
358–59, 366–68, 371, 374,
377, 396, 404–7, 413–14, 416,
419–20, 422–31, 433–39,
441–42, 444–47
 browser, 286–87
 cookies, 299, 321
 current, 295–99
 ID, 299–300, 314, 321
 securing, 321
 variables, 286, 293–300, 314,
344, 351, 358, 366, 414
session variables
 accessing, 294–95
 creating, 342
 saved, 296, 298
SQL (Standard Query
Language), 98–99, 110, 118, 241,
309, 385
SQL
 commands, 98, 102, 106–7,
312
 injection, 115, 306–13, 473
 query, 199, 306–7, 312,
332–33, 337
 UPDATE query, 206
Standard Query Language. See
SQL
superglobal, 93–94, 150, 281,

287, 294–95, 297
 COOKIE, 290
 POST, 92, 260, 331, 345
 SESSION, 294
superuser, 7–10, 13, 15

T
ternary operation, 60, 420
type, floating point, 26, 68–69

U
Ubuntu, 6, 8, 10–11, 16
 LTS release, 99
Unix, 6–7, 101
UNIX, timestamp, 287
url, 2, 93, 146, 150–51, 314,
348–49, 351
 current web page, 93
 destination, 185
user logins, 134, 158, 176, 192,
325
 individual, 324, 356

V
validation, 124–25, 128, 164–66,
173, 203–4, 293, 299, 328–29,
340, 343, 350
 adding, 131
 client-side, 164
 errors, 160, 165
variables, 24–25, 27, 29–31, 34,
38–39, 60–61, 66, 69, 71, 74–75,
83–86, 202, 205, 332–33, 456–57
 boolean, 125, 165, 330
 cookies and session, 286, 299
 creating, 25
 global, 85

 local, 83, 91–92, 457
 names, 19, 24–25, 28, 44–45,
75, 453
 scope, 85–86
 superglobal, 145, 150, 195–96,
205, 222, 225, 259, 280

W
web server, 2–4, 6, 94, 219,
221–22, 229–31, 319–21

X
XSS, 315–16, 318, 321
 attacks, 315–16, 318

Sam
ple

	Introduction
	The Life and Times of a PHP Script
	Static Vs. Dynamic Websites
	The Browser and the Server
	The Server and PHP

	Writing Your First PHP Script
	Setting Up a Development Environment
	Hello World!
	Exercises

	Why Variables Matter
	Variables in PHP
	Types of Variables
	Constants
	Exercises

	Basic String Interpretation
	Concatenation
	Interpolation
	Escaping
	Heredoc
	Exercises

	Operators, Expressions, and Basic Arithmetic
	Operators and Expressions
	Math Functions

	Arrays
	Simple Arrays in PHP
	Associative Arrays
	Adding Values
	Explicit Versus Short Array Syntax
	Useful Array Functions
	Multidimensional Arrays
	Exercises

	Truth, Comparisons, Conditions, and Compound Conditions
	Comparison Operators
	Conditional Logic
	Compound Conditional Logic Using Logical Operators
	Exercises

	Verifying Variables and Type Checking
	Verifying Variables
	Verifying and Checking Variable Types
	Exercises

	Looping
	Counting Loops
	Sentinel Loops
	Exiting and Continuing a Loop
	Exercises

	Functions
	Simple Function
	Function Parameters/Arguments
	Returning Values from a Function
	Further Advice On Writing Good Functions
	Exercises

	Working with HTML Forms
	A Simple Form
	Processing Our Form and Outputting Back to the Web Page
	Cleaning It Up Using a Self Referencing Page
	Exercise: Badlibs, Part 1

	Inserting Data Into a MySQL Database
	Using the MySQL CLI
	Create a PHP Application to Insert Data
	 Exercises

	Returning Data from a MySQL Database
	Returning Database Rows in a PHP Application
	Exercise: Badlibs, Part 2

	Validating Form Data and Creating Sticky Fields
	Modifying FullName Behavior Based On Validation
	Adding Field Validation
	Making the First and Last Name Fields Sticky
	Testing Our Script with Sticky Fields
	Exercise: Contact Form

	Displaying a List of Item Details
	Designing the Database
	Creating the Database
	Adding Movie Data
	Creating the Main Movie Listing Page
	Creating the Movie Details Page
	Exercises

	Adding Data Using the Web Application
	Creating a Page to Add Movies
	Complete Code Listing
	Link to the “Add a Movie” Page from the Listing Page
	Exercises

	Removing Data Using the Web Application
	Adding Deletion Links to Movie Listings
	Creating a “Remove a Movie Page”
	Complete Code Listing
	Exercises

	Editing Data Using the Web Application
	Linking Movie Details to the Edit Page
	Create the Editing Page
	Complete Code Listing
	Exercises

	Working With Files and Feature Additions to Existing Code
	Add a Field for File Information
	Create a Folder for Uploaded Movie Image Files
	Adding File Upload Capability
	Displaying Thumbnail Images of Movies on Main Page
	Displaying Movie Image on Details Page
	Add Image File Uploads to the Editing Page
	Displaying Image on Deletion Page
	Exercises

	Basic HTTP Authentication
	Password Protection with HTTP Authentication
	How Does HTTP Authentication Work?
	Create authorizeaccess.php
	Adding Authorization to Pages
	Exercises

	Persistence
	Cookies
	Session Variables
	Cookies and Session Variables
	The Database
	Best Practices in Solving the Persistence Problem
	Exercises

	Creating Secure Web Applications
	Secure Password Protection for Authenticating
	Guarding Against SQL Injection
	Leaking Information to Hackers
	Preventing Cross-Site Scripting Attacks
	File Uploads
	Securing Your Session
	Final Thoughts
	Exercises

	Adding User Logins
	Create a user Table
	Create a Signup.php script
	Create a login.php Script
	Create a logout.php Script
	Allow Users with Administrative Access
	Exercises

	Adding a Navigation Menu
	Create Navbar Logic
	Add the Navigation Bar
	Add Navigation Bar to Details Page
	Add Login Link to Navigation Bar
	Add Logout Link to Navigation Bar
	Add Sign Up Link to Navigation Bar
	Add Navigation Bar to addmovie.php
	Add Navigation Bar to Unauthorizedaccess.php
	Add Navigation Bar to editmovie.php
	Add Navigation Bar to removemovie.php
	Complete Code Listings
	Exercises

	Adding Reservation Features
	Add Number of Copies and Number Reserved
	Persisting Movie Reservations for Users
	Checking Movies Reserved by Users
	Modify Homepage Based On Access Privileges
	Refactoring to Remove Duplicate Inclusions
	Script for Reserving Movies
	Adding Cart to Navigation Menu
	Add a Script for a Shopping Cart
	Navigating to Reserved Movies
	Showing and Returning Reserved Movies
	Features to Add
	Flaws in This Application
	Exercises

	Introduction to Object-Oriented Programming in PHP
	Classes
	Properties
	Encapsulation Using Access Modifiers
	Accessor Methods
	The $this Variable
	General Purpose Methods
	Instantiating and Using a Class
	Validating Input to a Setter Method
	Inheritance
	Overriding Methods
	Constructors
	Creating Parameterized Queries Using OOP
	Exercises

