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Chapter

3
Why Variables Matter

“Always code as if the guy who ends up maintaining your code will be a 
violent psychopath who knows where you live.”

– Martin Golding
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3. Why Variables Matter

Variables in PHP

[1]	 PSR-1: Basic Coding Standard: http://www.php-fig.org/psr/psr-1/
[2]	 PSR-2: Coding Style Guide: http://www.php-fig.org/psr/psr-2/
[3]	 naming constants: http://www.php-fig.org/psr/psr-1/#1-overview

PHP supports several kinds of variables. Predefined variables are defined already by the 
PHP language, while user-defined variables are defined by you, the developer, in your code. 
Then there are form variables defined by the name attributes in an HTML form and become 
keys in a predefined variable.

Valid Variable Names
•	 PHP variable names must begin with a dollar sign ($).
•	 A variable name must be at least one character in length.
•	 The first character after the dollar sign $ can be a letter or an underscore _, and charac-

ters after that can be a letter, an underscore, or a number.
•	 Spaces and special characters other than _ and $ are not allowed in any part of a vari-

able name.

Here are a few examples of valid variable names:

$name1 
$price_tag 
$_abc 
$Abc_22 
$A23

Here are a few examples of invalid variable names:

$10names 
box.front 
$name#last 
A-23 
$5

Recommendations for Naming Your Variables
PHP does have a set of coding standards, which this book follows. You can find them on 
the PHP-FIG website at PSR-1: Basic Coding Standard[1] and PSR-2: Coding Style Guide[2]. 
However, the coding standards intentionally give little guidance on how to name your vari-
ables. The standards recommend using camelCase for naming your methods, StudlyCaps for 
class names, and ALL_CAPS separated by underscores for naming constants[3].Sam
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I like to use the following conventions when creating variables, functions, methods, 
constants, and classes in PHP, which I will be using throughout this book:

Property Example
Variable Names $snake_case

Function/Method Names function camelCase()

Classes class StudlyCaps

Constants const ALL_CAPS

Regarding naming your variables, a recommended practice is to choose good descriptive 
names for your variables (e.g., $temperature_fahrenheit). Also, most predefined PHP vari-
ables start with a $_ (i.e. $_POST[]). I recommend that you do not create any variables starting 
with an underscore (_) as this might be confusing to other PHP developers that have to 
maintain your code.

Types of Variables
All data is eventually represented to a computer using 1s and 0s. However, a programming 
language interpreter or compiler must know the data type representation before correctly 
converting the data into a format the computer can use. Like several other programming 
languages (e.g., JavaScript), PHP is a dynamically typed language (as opposed to a statically 
typed language like Java). A variable will dynamically change its type implicitly based on the 
data type of the value assigned to it or the context in which it’s used.

Scalar Data Types
PHP supports the following scalar data types:

•	 Boolean
•	 integer
•	 float
•	 stringSam
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Booleans
A Boolean data type contains a logical value that is either TRUE or FALSE. Boolean values are 
typically used in conditional logic statements:

$passed_drivers_license_exam = TRUE; 
 
if ($passed_drivers_license_exam == TRUE)  
{ 
    echo "Award driver's license.<br/>"; 
}

The online PHP documentation has more information about Boolean data types[4].

Integers

An integer data type contains a whole number that can be negative, zero, or positive. They 
are typically represented in the base-10 number system but can be represented using base 2, 
8, 10, or 16.

For more information, see the PHP docs about integer data types[5].

Floats

A floating-point data type contains real numbers which can be expressed either using deci-
mals and/or scientific notation:

// Pascal to Pound per square inch 
$pa_to_psi = 0.000145037738;

// Pascal to Pound per square inch 
$pa_to_psi = 145037738e-12;

// Pascal to Pound per square inch 
$pa_to_psi = 1.45037738e-4;

See the PHP documentation for more information about floating point data types[6].

[4]	 Boolean data types: http://php.net/language.types.boolean
[5]	 integer data types: http://php.net/language.types.integer
[6]	 floating point data types: http://php.net/language.types.floatSam
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Strings
A string is a group of characters enclosed in either single (') or double (") quotes. The type 
of opening quote must match the closing quote:

echo "This is a string"; 
echo 'This is also a string'; 
echo "This is a string with 'singe-quotes' embedded"; 
echo 'This is a string with "double-quotes" embedded';

If you have a string surrounded by double-quotes (") you can contain a double-quote in 
your string by escaping it with the back-slash (\). Likewise, you can embed single-quotes by 
escaping them if they are inside of a string surrounded by single-quotes:

echo "This is a string surrounded by \""; 
echo 'I don\'t like using contractions';

See the PHP manual for more information about string data types[7].

[7]	 string data types: http://php.net/language.types.string

Compound Data Types

PHP defines several “compound” data types which allow you to contain or aggregate 
multiple pieces of data of the same data type under a single entity. PHP supports the 
following compound data types:

•	 array
•	 object
•	 callable
•	 iterable

Array

Arrays in PHP are ordered maps, which are a way to associate a key with its corresponding 
value. Therefore, arrays in PHP are known as “associative arrays.”

An array is created using the array() language construct. Here’s how to create an empty 
array:

$fahrenheit_temperatures = array();Sam
ple
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PHP also supports short array syntax, which lets you define an array like this:  
$temperatures = [];

To add (or push) values onto the end of an array, use the [] syntax immediately following 
the variable name. Without specifying a key when adding values to an array, the key will be 
the next integer value:

$fahrenheit_temperatures[] = 32;  // 32 is associated with key 0 
$fahrenheit_temperatures[] = 100; // 100 is associated with key 1

Keys can be specified using either strings or integers. Associative arrays often use strings as 
keys to give meaning to the values they associate with in the array. To initialize an array with 
named keys, use the rocket (=>) operator:

$us_state_captials = array( 
   "Wisconsin" => "Madison", 
   "California" => "Sacramento" 
);

To add a named key to the end of the array, specify it in between []s:

$us_state_captials["Florida"] = "Tallahassee";

Note that arrays in keys are unique, so if you specify a key that already exists, you will be 
replacing its value.

A useful function for viewing the contents of an array is print_r()[8]. Embed print() in a set 
of <pre> tags as shown in Listing 3.1.

Listing 3.1. 

 1. <pre>
 2. <?php
 3. $us_state_captials = array(
 4.    "Wisconsin" => "Madison",
 5.    "California" => "Sacramento"
 6. );
 7. 
 8. print_r($us_state_captials);
 9. ?>
10. </pre>

[8]	 print_r(): http://php.net/print_rSam
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This function call produces the following output:

Array 
( 
        [Wisconsin] => Madison 
        [California] => Sacramento 
)

You can find more information on array data types[9] online.

Object

PHP is an “Object-Oriented” programming language, and it allows you to create objects. 
Objects are created from “class” definitions. Class definitions are like complex types that 
allow you to group your program data (what your program knows) and your program func-
tions (what your program does) in one place to represent modular components in software 
better. We will cover object-oriented programming in more detail later in the book.

To create an object, you “instantiate” it from a class definition using the new keyword as in 
Listing 3.2.

Listing 3.2. 

 1. <?php
 2. 
 3. class Radio
 4. {
 5.    function turnOnRadio() 
 6.    {
 7.       echo "Turning radio on";
 8.    }
 9. }
10. 
11. $car_radio = new Radio();
12. $car_radio->turnOnRadio();

The PHP manual has more information on objects[10].

[9]	 array data types: http://php.net/language.types.array
[10]	 objects: http://php.net/language.types.objectSam
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Callable
“Callables” can be created in PHP by naming a function to call as a string and invoking it with 
the call_user_func() function[11]. You can do this with simple functions, static class methods, 
and instantiated class methods. The following is a simple example of using a callback.

function exampleCallbackFunction()  
{ 
    echo "Hello world!"; 
} 
 
call_user_func('exampleCallbackFunction');

For more information on callables[12], check the online manual.

Iterable

An iterable[13] is a pseudo-type. It enforces arguments to functions or return values from 
functions are traversable like arrays. You may see this typehint when looking at the API for 
PHP functions. It mainly means that you can loop through the variable using a foreach.

[11]	call_user_func() function: http://php.net/call_user_func
[12]	 callables: http://php.net/language.types.callable
[13]	iterable: http://php.net/language.types.iterable
[14]	 resources: http://php.net/language.types.resource

Special Data Types

PHP defines a couple of special data types as well. These are:
•	 resource
•	 NULL

Resource

A “resource” is a special variable containing a reference to an external resource. Resources 
are typically used for working with files and databases:

$db_connection = mysqli_connect( 
   'localhost', 'db_user', 'db_password', 'db_to_use' 
); 
 
$file_handle = fopen('file.txt' 'r');

For more information on resources[14] and their usages, see the online documentation.Sam
ple

http://php.net/call_user_func
http://php.net/language.types.callable
http://php.net/language.types.iterable
http://php.net/language.types.resource


Constants

PHP Web Development with MySQL—A Hands On Approach to Application Programming 31

NULL
A “NULL” value[15] is a special variable that does not contain a value. A variable is NULL if:

•	 it is assigned the constant NULL,
•	 it has not been assigned any value,
•	 or it has been unset().

[15]	 “NULL” value: http://php.net/language.types.null
[16]	define(): http://php.net/function.define

Constants
Constants are values that do not change. Named constants are created in PHP using the 
define()[16] function:

define("BOILING_TEMP_IN_CELCIUS", 100); 
echo BOILING_TEMP_IN_CELCIUS; // outputs 100

Exercises
Create a script variables.php and do the following:

1.	 Assign numbers to two variables and echo their values.
2.	 Create a variable to hold a name, echo the string "Hello NAME" where NAME is the value 

of your variable.
3.	 Define a constant that represents the acceleration due to gravity (9.81 m/s). Echo the 

value of this constant.

Sam
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